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ABSTRACT 

 

 
Figure 1: Real-time generated waveform (16000 Hz) 

 

 

1. Introduction: 
 

 

Among the vast amount of fields that are concerned by the dimensionality problem, audio 

generation is a very intuitive example. Anyone can understand why feeding such dense data 

to a neural network would prove itself to be a challenge. A known approach to generating raw 

audio is to simply give the raw data to a recurrent neural network such as LSTMs [1] and let 

the model try to guess what the next frame will be as experimented in GRUV [2].The output 

would be added to the input and fed back to the network. Wavenet [3] suggested another 

approach, using dilated convolutions [4, 5]: 
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Formula (1) shows that the output has to be fed back to the input making it an autoregressive 

[6] model. Given the dimensionality of raw audio (up to 44100 samples per second), this 

approach requires a massive amount of time and computing power to produce raw audio. The 

larger the receptive field is, the longer it will take to compute.  

 

 

Because it is so hard [7,8] to train deep neural networks since they struggle to get an abstract 

overview of things, and need a massive amount of input data to do so, we will try and take a 

different approach; maybe there is a way to reduce the dimensionality of generative models.  

This paper introduces AbstractNet, a generative model for high density inputs. 

The model suggests a method that uses unsupervised learning to generate 

feature maps. The model drastically improves the performances of raw audio 

generation by reducing the required amount of input data and computing 

power necessary to achieve a similar result when compared to the state of the 

art. 

 

Keywords: Unsupervised learning, Generative model, audio, Auto-Encoder, 
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2. AbstractNet 
 

Instead of letting the model figure everything out from scratch, we could divide the learning 

process into two (or more) steps, guiding it so it can get an abstract view faster. As suggested 

in “The Sparsely-Gated Mixture-of-Experts Layer” [9] approach, sub-networks offer a solid 

approach to reducing the computing dimensionality of a dataset. Other works [10] also 

suggest using auto-encoders [11] as an effective optimization solution. 

 

The ideal approach would be to generalize our model, making no assumptions about the input 

shape (other than the fact that is it defined by recurrent patterns).  

Here is how we will do this: 

 

- Let the network find low level features in a sample of our dataset that represents the 

entire population using unsupervised learning (more specifically auto-encoders) 

- Compress the entire dataset using those features. 

- Generate a high level feature map using a recurrent neural network that defines how 

lower features are to be distributed 

- Generate a dense, low level input from the feature map using a specialized conditional 

generative model. 

 

Considering some raw input data (an audio sample or anything else), this is what the model 

looks like: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Architecture of the AbstractNet generation model 

 

G: Generative model, used to rebuild low level signals from feature maps. 

B:  Recurrent generative model, used on a feature map. In the tests I used LSTMS [12]. 

 

This model can be stacked to go deeper; each layer is then conditioned on the previous one, 

allowing the system to understand more abstract concepts without the need of large datasets 

or great computing power! 
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 Features Extraction: 

 
One of the key elements of AbstractNet is feature definition, this can be done 

programmatically (ex: amplitude and frequency are simple features that can be extracted 

manually), but the ideal setup is to have an unsupervised neural network extract the features 

from the low level raw input. The idea behind this approach is that a few samples of the large 

scale input data are enough to describe the low level features of a dataset. This means one 

should provide to the feature extractor at least one example for each feature present in the 

entire dataset (Obviously It is recommended to provide more than one). 

The examples are then converted to a feature map by the auto-encoder. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Architecture of the features extractor model 

AE: Auto-encoder 

X1: Resampled feature map. 

 

A feature map is represented as a set of features for each frame in the raw waveform: 

 

 

   {*        +⟦   ⟧ } (2) 

 

 

 

 
N: Feature map length 

k: a feature 

u: the amount of features (hidden units) defined in the auto-encoder  

 

The feature map is then fed to a neural network whose task is solely to train on multi-

dimensional feature maps. To control the output, the network is conditioned by the feature 

channel: 

 

 ̂( )   *    + (3) 

 

 
 
c: desired feature channel 

 
 

 

As a matter of fact, we don’t have to use the decoding part of the auto-encoder. Using a 

conditional [13] network can drastically improve the quality of the generated low level 

output; the de-noising aspect of the auto encoder is not really required. 
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Figure 4: A 20 channels generated feature map, in practice it is normalized. 

 

 

 Entropy pooling:  

 
To improve the receptive field and increase the coherence and flexibility of the generator, an 

entropy [14] map is injected in the input to condition the high level generator. This allows the 

network to have a higher level (thus more abstract) view.  

 

 ( )   ∑        
 

   

 (4) 

 

 

 

 
E: entropy of a given sample 

k: sample start index 

n: sample length 

x: input data 

 

 

Figure 5: An input sample with its entropy map one the left side, and the raw audio sample on 

the right side. 

 

 Quantization 
 

In this generative model, previous outputs are fed back to the new input, this means that the 

error rate is subject to an exponential increase: 
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e: error rate 

n: generation iteration 

  : measured error 

 

 

To improve the model’s flexibility and its tolerance to unknown patterns, the inputs have been 

quantized [15], encoding each value to only 256 values: 
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 (6) 

 
x: input data 

u: quantization (in our case 256) 

 

 

3. Conditional AbstractNets 

 
Just like the higher levels in the AbstractNet architecture control the lower levels output, one 

can manually inject his own conditions to an AbstractNet model to generate an output with 

custom characteristics: 
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c: a conditional input, similar to formula (3).  

 

This is typically done for TTS [16, 17]. One could use this technique to define the words he 

wants the model to generate. 

 

 

4. Experiments 

 
To figure out if AbstractNet really is efficient at generating coherent high density signals, the 

best way is to test it and evaluate the quality of the generated output.  

 
 Piano dataset: 

 
The generative model was trained on piano samples taken from DJ 

Oakawari’s songs. The encoder was trained on small samples extracted from 

the dataset; the training phase took 3 hours on an NVidia GTX860M GPU.   

For this test, a single AbstractNet layer was used. The model was 

implemented with Tensorflow. To improve the compression performances, I 

used Fast Fourier Transforms on the input signals; this allowed the encoder to 

ignore the time dimensionality. The decoder has been conditioned on 

previous waveforms to regenerate an audio sample when combined with a 



___________________________________________________________________________ 

 

6 

 

latent vector. The latent feature map for this test was 40 times smaller than 

the raw audio input; the output had a background noise due to the generator 

not being able to properly rebuild the audio sequence, even when conditioned 

on the previous samples. Several techniques [18] exist for noise removal, but 

it wasn’t the point of this experiment. 

Regardless, the model was able to generate high frequency audio samples (at 

16000 Hz) in real time, a very promising result. 

 

 Complex Samples: 

 

More complex audio samples do not get compressed as effectively, because 

one sample (for example with dance music) contains more features than 

piano. This is where a deeper architecture could prove itself more efficient.  

 

- Activation function 

 

Because the experiments are not defined as a classification problem, but rather a 

regression problem; since we want to find the closest approximation of a signal, no 

specific activation function was used, only the identity function. 

 

- Error function 

 

The cross entropy [19] function was used for error minimization during the experiments: 

 (   )    ∑ ( )     ( )

 

 

 

While I do not have the kind of computing power needed to train on video samples or to 

generate real time TTS, I believe this is a problem AbstractNet is able to approach with 

decent hardware. More tests have yet to be performed to explore the real potential of this 

technique; my tests were done on a laptop. The Auto-Encoder approach could also be tested 

with other techniques, such as Generative Adverserial Networks (GANs) [20], Variational-

Auto-Encoders (VAE) [21] or even combined VAE+GAN [22]. I am eager to see the results 

of other people using the AbstractNet architecture on other datasets with powerful machines 

and great ideas. 

 

 

5. Conclusion 
 

This paper presented AbstractNet, a generative model designed for dense inputs that takes a 

higher abstract view on the data, while drastically improving performances. By combining 

multiple layers of the AbstractNet architecture, the model could go further in its 

understanding of high level data structures, making the generated output more coherent. 

Because lower layers are conditional networks, it is possible to use them independently to 

generate low level features. This interesting behavior allows us to “talk” to the AbstractNet 

model and ask it to explain why it has behaved in a certain way. This means one can follow 

and understand the reasoning of an AbstractNet model to make it behave as expected. 
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